L’iter diagnostico di laboratorio nelle coagulopatie congenite emorragiche

Armando Tripodi
Angelo Bianchi Bonomi
Hemophilia and Thrombosis Center
Dept. of Clinical Sciences and Community Health
University of Milano
Congenital Hemorrhagic Coagulopathies

Aims of Laboratory Investigation

• To establish the causes of bleeding in patients who have shown evidence of abnormal bleeding

• To detect mild defects in asymptomatic patients (pre-surgical screening)
Congenital Hemorrhagic Coagulopathies

Most Important Screening Test

Good Collection of Clinical History
Congenital Hemorrhagic Coagulopathies

Why should clinical history be collected

• Poor sensitivity of screening tests to detect mild defects
• The type of bleeding may provide valuable clue to its etiology
• Some coagulation abnormalities are not associated with clinical bleeding (*FXII, PreKal, HMWK*)
Aims of the Clinical History

How should clinical history be collected

- Type of bleeding
- Location, frequency, duration, severity
- Whether it is spontaneous or post-traumatic
- Whether other family members have the same symptoms
- The age of appearance of the first symptoms
- Whether other diseases are present
- Whether the patient is taking drugs
Main Bleeding Symptoms

- Bleeding from mucous membranes is a typical feature of platelet disorders
- Soft-tissue bleeding is a typical feature of coagulation disorders
- Umbilical cord or delayed bleeding are typical features of factor XIII deficiency
- Simultaneous bleeding from multiple sites suggests an acute, acquired systemic coagulation or fibrinolytic disorders
Laboratory Tests

Should be aimed at investigating

- **Primary Hemostasis**
 - Platelet vessel-wall interaction
- **Coagulation**
 - Thrombin generation
 - Fibrin formation
- **Fibrinolysis**
 - Fibrin degradation
Laboratory Tests

Should be

• Sensitive
• Limited in number
• Easy to do
• Their results clinically-relevant
Two-step Laboratory Investigation

- **First Step (Simple Screening Tests)**
 - To detect most frequent and well established causes of bleeding

- **Second Step (Specific Tests)**
 - To detect less common causes of bleeding due to abnormalities to which the screening tests are insensitive
First Step
Laboratory Tests

First Step

- Bleeding Time (or alternative tests)
- Platelet Count
- Prothrombin Time (PT)
- Activated Partial Thromboplastin Time (APTT)
Bleeding Time

The time (minutes) needed to stop bleeding from a superficial incision of the skin
Laboratory Tests

<table>
<thead>
<tr>
<th>Test</th>
<th>Materials</th>
<th>Sensitive to:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bleeding Time</td>
<td>- Automated device</td>
<td>- Thrombocytopenia</td>
</tr>
<tr>
<td></td>
<td>- Sphygmomanometer</td>
<td>- Thrombocytopathy</td>
</tr>
<tr>
<td></td>
<td>- Filter paper</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Stopwatch</td>
<td></td>
</tr>
</tbody>
</table>
Variables affecting the Bleeding Time

- Depth of incision
- Site of incision
- Venous pressure
- End point
- Effect of drugs

The above variables and the complexity of the bleeding time made most labs to abandon this test.

Alternative tests have been proposed, but not yet completely validated

A. TRIPODI
Laboratory Tests

First Step

- Bleeding Time (or alternative tests)
- Platelet Count
- Prothrombin Time (PT)
- Activated Partial Thromboplastin Time (APTT)
Laboratory Tests

<table>
<thead>
<tr>
<th>Test</th>
<th>Materials</th>
<th>Sensitive to:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platelet count</td>
<td>- Electronic counter</td>
<td>- Thrombocytopenia</td>
</tr>
<tr>
<td></td>
<td>- Contrast-phase microscope</td>
<td>- Thrombocytosis</td>
</tr>
<tr>
<td></td>
<td>- EDTA (or citrated) whole blood</td>
<td></td>
</tr>
</tbody>
</table>
Further Evaluation of Primary Hemostasis

• **Low Platelet Count**
 - Investigation of thrombocytopenia

• **Prolonged Bleeding Time**
 - Measurement of plasma von Willebrand factor
 - Platelet aggregation studies
First Step

• Bleeding Time (or alternative tests)
• Platelet Count
• Prothrombin Time (PT)
• Activated Partial Thromboplastin Time (APTT)
Laboratory Tests

<table>
<thead>
<tr>
<th>Test</th>
<th>Materials</th>
<th>Sensitive to</th>
</tr>
</thead>
<tbody>
<tr>
<td>PT</td>
<td>- Thromboplastin</td>
<td>- FVII</td>
</tr>
<tr>
<td></td>
<td>- Calcium Chloride</td>
<td>- FX, FV, FII, FI</td>
</tr>
<tr>
<td></td>
<td>- Platelet Poor Plasma</td>
<td>- Oral anticoagulants</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Unfractionated heparin (?)</td>
</tr>
</tbody>
</table>
Variables affecting PT

- Type of Thromboplastin
- Citrate concentration \((105-109 \text{ mM})\)
- Calcium Chloride concentration
- Temperature
- Coagulometer
Origin of Thromboplastins

Tissue Factor & Phospholipids

• Human
 - Placenta, recombinant relipidated tissue factor
• Rabbit, Bovine
 - Brain
Prothrombin Time (PT)

Results expression

- Time (seconds)
- % Activity
- Ratio (PTpatient/PTnormal)
- INR (International Normalized Ratio)
Usefulness of the Prothrombin Time (PT)

- Diagnosis and management of
 - Congenital hemorrhagic coagulopathies
 - Disseminated intravascular coagulation
- Prognosis of liver cirrhosis
 - Model of end stage liver disease (MELD)
- Dose-adjustment of VKA
Laboratory Tests

First Step

• Bleeding Time (or alternative tests)
• Platelet Count
• Prothrombin Time (PT)
• Activated Partial Thromboplastin Time (APTT)
Laboratory Tests

APTT

<table>
<thead>
<tr>
<th>Test</th>
<th>Materials</th>
<th>Sensitive to:</th>
</tr>
</thead>
<tbody>
<tr>
<td>APTT</td>
<td>- Activator</td>
<td>- PK, FXII, HMWK, FXI</td>
</tr>
<tr>
<td></td>
<td>- Phospholipids</td>
<td>- FIX, FVIII</td>
</tr>
<tr>
<td></td>
<td>- Calcium Chloride</td>
<td>- FX, FV, FII, FI</td>
</tr>
<tr>
<td></td>
<td>- Platelet Poor Plasma</td>
<td>- Oral anticoagulants</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Unfractionated heparin, LMWH</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Lupus Anticoagulants</td>
</tr>
</tbody>
</table>
Variables affecting APTT

- Type/Concentration of Activator
- Type/Concentration of Phospholipids
- Activation time
- Citrate concentration \((105-109 \text{ mM})\)
- Calcium chloride concentration
- Temperature
- Coagulometer
Types of APTT Activators

- **Particulate**
 - Kaolin (sensitive, but unpractical)
 - Silica (sensitive and practical)

- **Soluble**
 - Ellagic acid (practical, but rather insensitive)
APTT result expression

- Clotting time (seconds)
- Ratio (patient-to-normal clotting time)
Further Evaluation of Coagulation

PT/APTT Prolongation

Mixing

Correction

Factor assay

Search for Lupus Anticoagulants

No correction

Inhibitor assay
A. TRIPODI

Fibrin (urea soluble) + **Fibrin** (cross linked)

Factor XIII

Common pathway
- Factor X
- Factor V
- Factor II
- Factor I

Intrinsic pathway
- HMWK
- Prekallikrein
- Factor XII
- Factor XI
- Factor IX
- Factor VIII

Extrinsic pathway
- Thromboplastin
- Factor VII

Activated partial thromboplastin time

Prothrombin time

A. TRIPODI
Need for differential diagnosis when APTT is prolonged owing to coag factors deficiency

• FIX, FVIII or FXI deficiency
 - Hemorrhagic risk
• FXII, Pre-kallicrein or HMWK deficiency
 - No hemorrhagic risk
Usefulness of the APTT

- Diagnosis and management of
 - Congenital hemorrhagic coagulopathies
 - Disseminated intravascular coagulation
- Dose-adjustment of unfractionated heparin therapy
 - Therapeutic interval: 1.5-2.5 times prolongation over the baseline value
- Search for circulating anticoagulants
Second Step

Clinical history of bleeding, but normal first step laboratory tests
Laboratory Tests

Second Step

- **FXIII**
- Platelet Factor 3 (phosphatidylserine)
- Hyperfibrinolysis
- Von Willebrand Factor
- Dysfibrinogenemia
Factor XIII Assay

- Clot solubility in 5M urea
- Functional
- Immunochemical
Laboratory Tests

Second Step

- FXIII
- Platelet Factor 3 (phosphatidylserine)
- Hyperfibrinolysis
- Von Willebrand Factor
- Dysfibrinogenemia
Isolated Defect of PF3 Procoagulant Activity
(Scott syndrome)

- Weiss HJ et al
 Isolated deficiency of platelet procoagulant activity

- Toti F et al
 Scott syndrome, characterized by impaired transmembrane migration of procoagulant phosphatidylserine and hemorrhagic complications, is an inherited disorder
 Blood 1996; 87: 1409

- Charles L. Percy CL et al
 Laboratory monitoring of Scott Syndrome
 Br J Haematol 2009; 149: 803
Laboratory Tests

Second Step

- FXIII
- Platelet Factor 3 (phosphatidylserine)
- Hyperfibrinolysis
- Von Willebrand Factor
- Dysfibrinogenemia
Fibrinolysis

Histidin-rich Glycoprotein

TAFI

Tissue Plasminogen Activator
Activator
Inhibitor

Plasminogen

Intrinsic activation (FXIIa, Kal, etc.)

Tissue Plasminogen Activator

Urokinase Pro-Urokinase

Plasmin

Plasmin inhibitor

Fibrin

Fibrin degradation
Congenital Deficiency of Plasmin Inhibitor

- **Homozygotes**
 - Severe hemophilia-like bleeding tendency since childhood
 - Rebleeding from wounds
- **Heterozygotes**
 - About 20% of patients present with mild bleeding tendency (easy bruising, oozing from dental extractions)
Laboratory Tests

Second Step

- FXIII
- Platelet Factor 3 (phosphatidylserine)
- Hyperfibrinolysis
- Von Willebrand Factor
- Dysfibrinogenemia
The APTT & Willebrand disease

Mild forms of Willebrand disease may present with (near) normal APTT
Laboratory Tests

Second Step

• FXIII
• Platelet Factor 3 (phosphatidylserine)
• Hyperfibrinolysis
• Von Willebrand Factor
• Dysfibrinogenemia
Dysfibrinogenemia

Main Characteristics

- Abnormal fibrinogen in plasma
- Low functional fibrinogen (Clauss method)
- Normal or high immunochemical fibrinogen
- Prolonged thrombin clotting time
Dysfibrinogenemia

Symptoms

- None
- Hemorrhage
- Arterial and/or Venous Thromboembolism
Conclusions

• A rational two-step approach combining
 - Clinical data
 - Laboratory data
• Helps identifying the majority of congenital hemorrhagic coagulopathies