

XXIV Congresso Nazionale SISET Abano Terme, 9-12 novembre 2016

II VWF ricombinante nella Malattia di von Willebrand

Augusto B. FEDERICI

Hematology and Transfusion Medicine Luigi Sacco University Hospital, University of Milan augusto.federici@unimi.it

Disclosures for Augusto B. Federici, MD

- Consultancy: Baxalta; CSL-Behring; Grifols; LFB-KEDRION; Octapharma; Werfen.
- Honoraria: Baxalta; CSL-Behring; Grifols; LFB-KEDRION; Octapharma; Werfen.
- Speakers Bureau: Baxalta; CSL-Behring; Grifols; LFB-KEDRION; Octapharma; Werfen.
- Membership on an Entity's Board of Directors or Advisory Committee: Baxalta; CSL-Behring; Grifols; LFB-KEDRION; Octapharma; Werfen.
- Discussion of Off-Label: Not Applicable.

Aims of Treatments of VWD patients Correction of the VWF defects

To correct the dual VWF defect present in patients with the different VWD types:

- Impaired Platelet adhesion and plateletplatelet interactions (PD-VWF assays)
- Reduced levels of Factor VIII that are associated with reduced or abnormal VWF

VWD therapeutic management

VWD treatment considerations

Is desmopressin likely to be effective?	 Baseline VWF level >10%
	 Conduct desmopressin trial (IV, SC, IN)
	 Test VWF:Ag, VWF:RCo, and FVIII:C levels at 1, 2, and 4 hours
	 Positive response both FVIII and VWF > 50% after administration
Addition of adjunctive therapies	Antifibrinolytics
	 For menorrhagia: oral contraceptive or levonorgestrel-releasing IUD
VWF concentrates	 If desmopressin response is inadequate
	 If desmopressin is required for several consecutive days
	 Dosing/product considerations
	VWF/FVIII ratio
	VWF multimer profile
	Dosing by VWF:RCo or FVIII:C
	Potential for prophylactic schedule
	Rare development of VWF alloantibodies

Lillicrap D, Blood 2013;122(23):3735-3740.

List of VWF concentrates used in Clinical practice (1982-2016)

- Medical need: a recombinant VWF option
- rhVWF is the largest and functionally most complex protein multimer ever produced by recombinant DNA technology
- rhVWF and ADVATE are coexpressed in Chinese hamster ovary cells
 - ADVATE is purified and rhVWF is removed
- rhVWF can be recovered, processed (propeptide cleavage), and purified
- rhVWF multimers are preserved

rhVWF, recombinant human von Willebrand factor.

rhVWF Contains High and UHMW Multimers **Usually Not Present in pdVWF**

pdVWF (in house)

-hVWF07002

Human plasma

Multimer Analysis of rhVWF, PD-VWF Concentrates and VWF in Plasma

Absence of ADAMTS13-mediated proteolytic fragments

UHMW, ultra high molecular weight.

Specific Activity of rhVWF Is Substantially Higher Than That of Plasma-Derived VWF and VWF/FVIII Products

	VWF:Ag (IU/mg protein)	VWF:RCo (IU/mg protein)	VWF:CBA/VWF:Ag (IU/IU)	VWF:RCo/VWF:Ag (IU/IU)
rhVWF	116 ± 7	134 ± 28	1.14 ± 0.16	1.16 ± 0.25
	n=7	n=7	n=3	n=7
Pasteurized	17.9 ± 4.7	8.0 ± 1.7	0.84	0.51 ± 0.10
pdVWF	n=12	n=7	n=1	n=12

- The specific activity (VWF:RCo/protein) is substantially higher than that of pdVWF
 - pdVWF products contain other proteins, including human albumin, substantially lowering their specific activity
- rhVWF is a highly concentrated product with physiological VWF:RCo/VWF:Ag and VWF:CBA/VWF:Ag ratios
 - Contains more active VWF than pd concentrates

Ag, antigen; CBA, collagen binding activity; pd, plasma-derived; pdVWF, plasma-derived von Willebrand factor; RCo, ristocetin cofactor.

Differences between rhVWF (VONVENDI) & plasma-derived VWF

rhVWF	pdVWF
Expressed in CHO cells	Synthesized in endothelial cells and megakaryocytes
Pro-peptide removal mediated in vitro through exposure of the pro-VWF to a second recombinant protein (the pro- peptide-processing enzyme furin)	Post-translational modification of pro-peptide removal occurs intra-cellularly during passage of the protein to the Golgi and post-Golgi compartments
No exposure to ADAMTS13 → intact VWF subunits → ultralarge VWF multimers present	Consists of VWF subunits that have been exposed to plasma ADAMTS13 → subunits cleaved at TYR ¹⁶⁰⁵ -MET ¹⁶⁰⁶ → Ultralarge VWF multimers absent
Glycosylation: ABO blood group glycans absent	Glycosylation: ABO blood group glycans present
	Plasma-derived VWF concentrate contain other proteins incl. ADAMTS13

* Low-resolution agarose (1% SeaKem®) / Samples adjusted to VWF:Ag content

- ** SDS-PAGE / Immunoblot with polyclonal anti-VWF Ab / Samples undiluted
- ULMW multimers also found in the circulation after DDAVP treatment
- · ULMW multimers disappeared over time, similar to the disappearance in patients treated with DDAVP
- ADAMTS13-specific cleavage product appeared 15 minutes after administration

Ab, antibody; DDAVP, desmopressin acetate; SDS-PAGE, sodium dodecyl sulfate-polyacrylamide gel electrophoresis; ULMW, ultra-low molecular weight.

FVIII Binding Capacity in Dependence of VWF Multimerization Degree

- Each VWF monomer contains one binding site for FVIII
 - Each monomer should be able to bind one FVIII molecule
- Implies that larger multimers can bind more FVIII than smaller ones
- Dependency of FVIII binding capacity on the multimerization degree of VWF was analyzed
 - Gradual decrease in FVIII binding capacity for fractions with lower molecular weight multimers
 - VWF dimer as the smallest possible unit retained an FVIII binding capacity of 20% relative to normal human plasma

Turecek PL et al. Semin Thromb Hemost. 2010;36:510-521.

- Enhanced FVIII stabilization leads to longer time at effective FVIII levels
- Enables use of rhVWF alone to treat bleeding event reduces risk of thrombosis due to high FVIII levels compared with current VWF:FVIII products

<u>∧</u>

Generation of rhVWF Fractions of Varying Multimer Size

VWF multimer number (1% agarose)

Β

rhVWF fractions

Α

VWF activity parameters

		VWF:Ag/ protein (IU/mg)			
	BAX111	116 ± 7 n=7	1.16 ± 0.25 n=7		
ction	А	133	0.420		
VF fra	В	131	0.088		
rhVV	С	149	0.026		

- rhVWF fractions of varying multimer size were generated by size exclusion chromatography
- Multimer size contributes to VWF functional activity

С

VWF Size-Dependent Platelet Adhesion

Shear rate of 1500 s⁻¹ (60 dyn/cm²)

Multimer size of rhVWF contributes to platelet adhesion properties

First Recombinant VWF Concentrate: Summary

- Dependable manufacturing
 - Pure rhVWF concentrate
 - Formulated in absence of animal or human components
 - Intact VWF subunits
- Longer half-life than for pdVWF
- Consistent multimer composition = more predictable therapeutic effects
 - -Platelet binding properties depend on the multimeric size of rhVWF
 - -rhVWF contains the hemostatic most effective UHMW multimers
 - Improved FVIII stabilizing effect than for pdVWF
- rhVWF effectively promoted platelet adhesion to collagen – even under shear stress

First Recombinant VWF Concentrate: Summary (cont)

- Physiologically degradable
 - -rhVWF is a substrate for ADAMTS13 that is as good as plasmatic VWF; it can also be cleaved under shear stress
 - Low amounts of ADAMTS13 (<1% of normal human plasma) are sufficient to rapidly cleave rhVWF and remove UHMW portions of multimers
- Therapeutic potential
 - Dosing rhVWF with ADVATE will allow better control of the initial levels of both FVIII and VWF
 - Dosing rhVWF alone will allow better control of FVIII levels, reducing the risk of thrombotic events due to high FVIII levels

Objectives: Phase 3 rhVWF in VWD

Primary Objective

 Hemostatic efficacy of rhVWF:rFVIII and/or rhVWF alone for treatment of bleeding episodes

Secondary Objectives

- Pharmacokinetics (rhVWF alone and with rFVIII)
- Tolerability and safety of rhVWF
- Exploratory
 - Changes in health-related quality of life
 - Subjective hemostatic efficacy rating

Primary End Point: High Treatment Success Rate

	Subjects With Tr	eatment Success
Full analysis set	N of N (%)	90% CI for proportion
Prospective efficacy rating excluding GI bleeds	18/18 (100)	84.7 — 100.0
Prospective efficacy rating including GI bleeds	20/20 (100)	86.1 — 100.0
All bleeds	22/22 (100)	87.3 — 100.0

- Definition of primary end point: Number/proportion of subjects with treatment success for treated bleeding episodes based on estimated versus actual number of infusions
- <u>Benchmark</u>: Humate-P claims 97% treatment success http://labeling.cslbehring.com/PI/US/Humate-P/EN/Humate-P-Prescribing-Information.pdf

Secondary Efficacy End Points: Bleeding Episodes Rated Good or Excellent

	Bleeding Episodes Wit Excellent	h an Efficacy Rating of or Good
Full analysis set	N of N (%)	90% CI for proportion
Prospective efficacy rating excluding GI bleeds	126 (100)	97.7 — 100.0
Prospective efficacy rating including GI bleeds	130 (100)	97.7 — 100.0
All bleeds	192 (100)	98.5 — 100.0

- 186 (97%) of all bleeds treated with rhVWF:rFVIII and rhVWF were rated excellent
- The majority of bleeds (81.8%) was resolved with 1 infusion
- The maximum number of infusions was 4

Secondary Efficacy End Points (cont): Infusions per Bleeding Episode and Dose per Bleeding Episode

Number of Infusions Required for the Treatment of a Bleeding Episode (Secondary Efficacy Outcome Measure) (Study 071001: Full Analysis Set)

Infusions per Bleeding Episode	N ^a	Mean	SD	Median	90% CI for Median	Minimum	Maximum
Prospectively estimated	130	1.2	0.61	1.0	1.0 - 1.0	1	6
Actual ^b	130	1.2	0.47	1.0	1.0 — 1.0	1	3
Actual – total	192	1.2	0.56	1.0	1.0 - 1.0	1	4

Actual Dose [IU/kg] per Bleeding Episode (Secondary Efficacy Outcome Measure (Study 071001: Full Analysis Set)

Treatment	Analyte	N ^a	Mean	SD	Median	90% CI for Median	Minimum	Maximum
rhVWF:rFVIII or rhVWF	rhVWF	174	57.4	30.27	48.2	43.9 - 50.2	23.8	184.9

^a N = Number of bleeding episodes

^a Number of actual infusions for prospectively estimated ones.

Secondary Efficacy End Points (cont): Product Usage per Bleeding Episode

• 1st infusion per protocol: rhVWF + rFVIII

Investigational Product Usage per Bleeding Episode (Study 071001: Full Analysis Set)

Infusion	rhVWF:rFVIII n of N (%)	rhVWF only n of N (%)
1st	182 of 192 (94.8)	10 of 192 (5.2)
2nd	14 of 35 (40.0)	21 of 35 (60.0)
3rd	2 of 10 (20.0)	8 of 10 (80.0)
4th	0 of 1 (0.0)	1 of 1 (100.0)

	No. bleeding episodes	Total no. infusions	Median (range) no. infusions/bleed	Median (range) VWF:RCo dose (IU/kg)	Median (range) rFVIII dose (IU/kg)	% bleeds (N = 192) rated* excellent or good (n excellent/good)
Subject VWF type						
Type 3	175	219	1 (1-4)	48.2 (23.8-184.9)	33.6 (16.6-129.3)	100% (171/4)
Type 2A	16	18	1 (1-2)	50.2 (32.9-90.2)	32.5 (23.7-38.6)	100% (14/2)
Type 2N	1	1	1 (1-1)	54.3 (54.3-54.3)	NA†	100% (1/0)
Bleed severity						
Minor	122	132	1 (1-3)	43.3 (25.2-158.2)	33.5 (17.6-86.2)	100% (119/3)
Moderate	61	89	1 (1-4)	52.7 (23.8-184.9)	36.9 (16.6-129.3)	100% (59/2)
Major/severe	7	15	2 (1-3)	100.0 (57.5-135.0)	39.0 (25.0-42.3)	100% (6/1)
Unknown	2	2	1 (1-1)	33.4 (33.1-33.8)	23.3 (23.1-23.6)	100% (2/0)
Bleed site‡						
Joint	59	66	1 (1-3)	48.2 (23.8-139.6)	34.9 (16.6-129.3)	100% (57/2)
Gastrointestinal	6	10	1 (1-2)	60.0 (53.6-121.1)	33.2 (19.3-49.4)	100% (5/1)
Mucosal	106	121	1 (1-4)	43.3 (23.8-184.9)	30.6 (16.6-61.3)	100% (103/3)
Other§	37	57	1 (1-4)	52.2 (25.2-184.9)	36.8 (17.6-86.2)	100% (36/1)
Bleed cause						
Spontaneous	165	255	1 (1-4)	46.5 (23.8-184.9)	33.6 (16.6-86.2)	100% (160/5)
Traumatic	26	30	1 (1-3)	51.9 (25.2-139.6)	35.8 (17.6-129.3)	100% (26/0)
Unknown	1	3	3 (3-3)	125.5 (125.5-125.5)	50.3 (50.3-50.3)	100% (0/1)

Gill JC et al, Blood 2015;126(17):2038-2046.

PK50 FVIII:C Concentration Over Time

PK of rVWF \pm rFVIII in VWD patients.

Gill JC et al, Blood 2015;126(17):2038-2046.

VWF multimer activity.

A Proportion of large VWF multimers

Time point	Median % (range)
	(range)
Within 1 h pre-infusion	0.0% (0-24)
15 +/- 5 min post-infusion	30.0% (20-40)
30 +/- 5 min post-infusion	29.5% (25-35)
60 +/- 5 min post-infusion	29.5% (22-38)
3 +/- 0.5 h post-infusion	26.0% (19-32)
6 +/- 0.5 h post-infusion	25.0% (17-37)
12 +/- 0.5 h post-infusion	21.5% (12-26)
24 +/- 0.5 h post-infusion	14.0% (8-27)
30 +/- 0.5 h post-infusion	8.5% (4-23)
48 +/- 0.5 h post-infusion	7.5% (3-14)
72 +/- 0.5 h post-infusion	3.0% (1-5)
96 +/- 0.5 h post-infusion	2.0% (1-7)

B VWF multimers and degradation products pre- and post-infusion of rVWF in a subject with type 3 VWD.

Gill JC et al, Blood 2015;126(17):2038-2046.

- T_{1/2} of rhVWF appears to be slightly longer than T_{1/2} of pdVWF products published¹
- T_{1/2} of rhVWF in clinical phase 3 is consistent with T_{1/2} in clinical phase 1
- IR of rhVWF is comparable to that of pdVWF products
- PK is not dependent regardless of whether rhVWF is given alone or in combination with rFVIII
- Pretreatment and end-of-study repeated PK results are in close agreement
- PK50 and PK80 results are comparable

1. Kessler CM et al. Thromb Haemost. 2011;106:279-288.

- Overal, rhVWF was safe and well tolerated
- No development of inhibitory and total anti-VWF binding antibodies
- No development of inhibitory antibodies to FVIII
- No development of antibodies to Chinese hamster ovary proteins, mouse immunoglobulin G, and recombinant Furin
- No thrombotic events

- rhVWF is the first pure rVWF concentrate
- rhVWF was safe and well tolerated in phase 1 and 3 studies
- rhVWF has the potential to provide a better treatment option for patients with VWD
- Based on these positive results, it would be also interesting to assess this novel rhVWF in other clinical conditions characterized by abnormal VWF (AVWS)

Recombinant VWF *Current perspective 2016*

Questions?

augusto.federici@unimi.it