Dai meccanismi molecolari allo sviluppo di strategie terapeutiche innovative per i difetti genetici della coagulazione

Molecular mechanisms for new therapeutic approaches (1)

Substitutive therapy (protein)

- extending the half-life/bio-distribution of circulating exogenous factor protein
- mimicking the coagulation function of factor VIII by bispecific antibody technology

Disrupting anticoagulant proteins (antibodies, aptamers, RNAi)

- tissue factor pathway inhibitor (TFPI)
- antithrombin (AT3)

Humanized asymmetric antibody mimicking FVIIIa function

Decreasing anticoagulant function: Inhibition of inhibitors

TOOLS Antibodies Aptamers RNAi

Inhibition of TFPI by specific antibodies (Concizumab)

increased thrombin generation in Hemophilia plasma HA + aptamerPeak thrombin (nM) 80 PNP 60 40 HemophiliaA (HA) 20 100 1000 0 0.1 10 [Aptamer] (nM) ARC19499 (♦)

Aptamer anti TFPI ARC19499:

negative control oligonucleotide (\blacksquare).

Waters E K et al. Blood 2011;117:5514-5522

RNA interference (RNAi)

RNAi Targeting Antithrombin

Antithrombin Depletion Increased Thrombin Generation in Hemophilia Plasma

ALN-AT3

Antithrombin depletion increases peak height and delays inhibition of thrombin

RNA directed/based therapy

- Engineered small RNA: RNAi, U1snRNA
- Drug-induced translational readthrough of stop codons
- Transcription activation TALE-TF

Counteracting the dominant negative effect in VWD type 2 by RNAi

Caterina Casari

Counteracting the dominant-negative effect

Counteracting the dominant-negative effect: allele-specific RNAi -*in vitro*-

Use RNAi to specifically block expression of the dominant negative allele

Casari C et al. Blood 2010

Counteracting the dominant-negative effect: allele-specific RNAi -*in vitro*-

Use RNAi to specifically block expression of the dominant negative allele

si3681 decreased

DEL-VWF mRNA

&

did not affect

WT-VWF mRNA

Capillary electrophoresis of RT-PCR products from transfected cells

> Selective decrease of the altered mRNA and thus of the dominant negative VWF

> > Casari C et al. Blood 2010

Counteracting the dominant-negative effect: Partial rescue of VWF

Partial rescue of HMWMs

in vivo RNA interference

3.8 fold increase of the antigen levels by siDEL administration

in vivo RNA interference

3.8 fold increase of the i antigen levels by siDEL administration

improvement of the multimer profile

Counteracting the dominant-negative effect in VWD type 2 by RNAi

- The effects of mutations with dominant-negative effect were reproduced for the first time in vivo in Vwf-/- mice
- In our mouse model for the heterozygous expression of mutations with dominant-negative effects on VWF, we were able to counteract the deleterious effects of the mutations by the *in vivo* administration of siRNAs, selectively targeting the mutant mRNA molecules
 - → siRNA was administered for the first time in a mouse model of VWD and could represent a therapeutic approach

RNA directed/based therapy

- Engineered small RNA: RNAi, U1snRNA
- Drug-induced translational readthrough of stop codons
- Transcription activation TALE-TF

Splicing steps: focus on U1snRNA

Pomeranz-Krummel et al. 2009

Recognition of 5'ss by base-pairing to the 5' end of U1 snRNA: Consensus sequence of 5'ss

Splicing Modulation by modified U1 as tools for therapeutic approach

Rescue by Engineered U1snRNA with improved complementarity –increased affinity - to the mutated donor splice site?

Dose dependent induction of correct splicing

The correctly spliced form is 15±5% of the aberrant form

Pinotti Blood 2008

The U1+5a-mediated rescue of circulating hFVII levels was prolonged overtime by AAV delivery

Hundrand House Have been started as a second s

AAV2-FVII+5A (vg/mouse)	AAV8-U1+5a (vg/mouse)
 $1.2^{*}10^{12}$	$1.2^{*}10^{11}$

Balestra et al JTH 2014

Splicing Modulation by modified U1

Mutation specific U1snRNAs Able to correct a single 5'ss change

EXON specific U1 snRNAs able to correct multiple splicing mutations

Engineered U1s (ExonSpecificU1s) for splicing correction of FIX exon 5 natural mutations

•Targeting U1 snRNAs to specific intronic regions located downstream DDSS to improve exon recognition and inclusion?

Alanis et al HMG 2012

Rescue of FIX protein and FIX function by ExonSpecificU1

Alanis et al HMG 2012

UNIV	/ERSITY	OF OF	FERR	ARA
	- EX LABOF	RE FRU	CTUS -	
	1	391		

ExSpeU1-mediated rescue of hFIX expression: coagulation time

Shortening (~20sec) of coagulation time

UNIVERSITY OF FERRARA - EX LABORE FRUCTUS - RNA directed/based therapy

- Engineered small RNA: RNAi, U1snRNA
- Drug-induced translational readthrough of stop codons
- Transcription activation TALE-TF

mRNA-based approaches: Drug-induced translational readthrough of stop codons

Aminoglycosides bind the decoding site within the A-site in the ribosomal small subunit

Aminoglycoside suppression of nonsense mutations in severe hemophilia

Paula D. James, Sanj Raut, Georges E. Rivard, Man-Chiu Poon, Margaret Warner, Susan McKenna, Jayne Leggo, and David Lillicrap

BLOOD, 1 NOVEMBER 2005 • VOLUME 106, NUMBER 9

Patient no.	Hemophilia	Nucleotide	Mutation	Conserved amino acid
1	А	4241C > A	Ser1395Stop	No
2	В	30875C > T	Arg252Stop	Yes
3	А	6403C > T	Arg2116Stop	Yes
4	А	1536C > T	Arg427Stop	Yes
5	В	31118C > T	Arg333Stop	Yes

Table 1. Patients with severe hemophilia with known nonsense mutations treated with gentamicin

Patient no. 5 Hemophilia B: Arg 333 Stop

FVII Deficiency: cellular models

Drug-induced translational readthrough investigated by expression of nonsense variants present in 70 % of HB patients with premature stop codons

Mattia Ferrarese

only two variants displayed a remarkable rescue of activity

Expression of the **most probable missense variants** arising from readthrough

only two variants displayed a remarkable rescue of activity

UNIVERSITY OF FERRARA - EX LABORE FRUCTUS -
Stop codons in FVII deficiency: the appreciable rescue of the p.Cys132X is driven by re-insertion of the wild-type residue!

Drug-induced translational readthrough of stop codons

 Only a few nonsense mutations in coagulation factor genes are remarkably responsive to drug-induced readthrough due to specific nucleotide sequence and protein structure constraints.

• The recombinant expression of nonsense variants

helps interpreting the poor response reported in the few investigated patients

Helps selecting <u>candidate patients eligible for treatment</u>

RNA directed/based therapy

- Engineered small RNA: RNAi, U1snRNA
- Drug-induced translational readthrough of stop codons
- Transcription activation TALE-TF

AN ENGINEERED TALE-TRANSCRIPTION FACTOR RESCUES F7 PROMOTER ACTIVITY IMPAIRED BY MUTATIONS CAUSING SEVERE FACTOR VII DEFICIENCY

UNIFE INTERNATIONAL - ex labore fructus -

RNA

Silvia Pignani Department of Life Sciences and Biotechnology University of Ferrara-Italy

pgnslv@unife.it

ENGINEERED TALE-TRANSCRIPTION FACTORS TO RESCUE TRANSCRIPTION OF FACTOR VII IMPAIRED BY PROMOTER MUTATIONS

UNIVERSITY OF FERRARA -- UJUNAT INCCUS

TALE-TF4 enhances activity of the F7 promoter

in HepG2 cells

wild type mutants

TALE-TF4 does not induce trascription of *F10*

TF4 increased F7 mRNA and FVII procoagulant levels in hepatocytes transduced by AAV

Experimental evidence for TALE-TFs as gene-specific tools useful to counteract disease-causing promoter mutations

Genome editing in situ by CRISPR/Cas9 restores hemostasis in F9 mutant mice

Yuting Guan et al EMBO Mol Med 2016

Targeting albumin supports production of therapeutic levels of FVIII and functional correction of hemophilia A phenotype.

Sharma et al. Blood 2015 Targeting albumin supports production of therapeutic levels of FVIII and functional correction of hemophilia A phenotype.

©2015 by American Society of Hematology

Rajiv Sharma et al. Blood 2015;126:1777-1784

Promoterless gene targeting without nucleases ameliorates haemophilia B in mice

Barzel et al Nature 2015

Mirko Pinotti

