Inquadramento clinico delle piastrinopatie congenite

Paolo Gresele

Dipartimento di Medicina Università di Perugia

SISET Training Center (Corso Malattie Emorragiche) Roma, 4-8 giugno 2018

INHERITED PLATELET FUNCTION DISORDERS

- A heterogeneous group of rare congenital hemorrhagic disorders with normal (or reduced) platelet number and an altered platelet function
- Mucocutaneous bleeding diathesis of variable severity
- Large heterogeneity in terms of molecular/genetic defect (for several forms not yet identified)

Prevalence of IPD

- The prevalence of IPNDs in Italy is estimated to be at least 2.7/100,000 (Balduini C et al. Hamostaseologie 2012;32:259-270).
- The exact prevalence of IPFDs is unknown, but estimates go from 2/1,000,000 (Israels SJ et al. *Pediatr Blood Cancer* 2011; 56:975-83) to more than 1/100, a prevalence higher than that of von Willebrand disease (Quiroga T et al. *Haematologica* 2007;92:357).

Recorded incidence of bleeding disorders from the 2015 annual registration data from the UK-HCDO

Diagnosis of suspected IPFD: results of a worldwide survey

- Many laboratories worldwide are involved in the diagnosis of IPFD
- Tests for IPFD represent a major committment these diagnostic laboratories (>14.000 patients studied each year)
- High variability in the diagnostic approaches
- In 40-60% of studied patients with confirmed platelet dysfunction, a diagnosis is not achieved despite demanding laboratory investigations

History of clinical and molecular discovery of inherited platelet function disorders

Bury L, Falcinelli E, Gresele P, Wintrobe's Clinical Hematology 14° Edition, in press

INHERITED PLATELET FUNCTION DISORDERS A revised classification

1-ADHESIVE PROTEIN RECEPTOR DEFECTS

BSS, GT, PT-VWD, VCF, $\alpha_2\beta_1$, GPVI, GPIV

2-ABNORMALITIES OF G-PROTEIN COUPLED RECEPTORS

 P_2 purinergic receptors, TP-receptor, α_2 adrenergic receptor, PAR-1

3-DEFECT OF PLATELET GRANULES (isolated/syndromic)

 α -granules, δ -granules, α + δ granules

4-SIGNAL TRANSDUCTION PROTEINS DEFECTS

Gs, Tx-synthase, cPLA₂, PKA, LADIII, CalDAG-GEFI, COX-1, SRC

5-DEFECTS OF MEMBRANE PHOSPHOLIPIDS

Scott syndrome, Stormorken syndrome

6- DEFECTS OF TRANSCRIPTION FACTORS

FPD/AML/MDS, FLI1-related dense granule defect,

Paris-Trousseau syndrome, GATA1

7- DEFECTS OF CYTOSKELETAL PROTEINS

Filaminopathy, WAS/XLT, Cytosolic adaptor protein (ADAP)

8- ENHANCED PLATELET FIBRYNOLITIC ACTIVITY

Quebec platelet disorder

9- UNCLASSIFIED

SLFN14-related thrombocytopenia

DIAGNOSTIC ALGORITHM - Flowchart

Clinical evaluation of the patient with a suspected inherited platelet function disorder

- Personal and family bleeding history
- Drug and food history
- Sites of bleeding (easy bruising, epistaxis, gum bleeding, menorrhagia)
- Severity (objective assessment?), recurrence
- Concomitant systemic alterations

Assessment of the bleeding severity of hemorrhagic disorders

- Measurement of history of spontaneous or provoked hemorrhage by bleeding assessment tools
- Systematic evaluation of the prevalence of excessive bleeding during invasive procedures

BAT bleeding score according to disease group

1042 subjects enrolled from 42 centers

paolo.gresele@unipg.it

BAT bleeding score in IPFD by principal diagnoses

Frequency of clinically significant bleeding symptoms (score ≥2) in IPFD and VWD-1

The SPATA Study

49 centers, 17 countries, 829 procedures in

423 IPD patients (238 IPFD, 135 IPND), 16 forms of IPFD and 9 forms of IPND

Median age: 40 years (IQR 23.7-54). Women: 56%

Frequency of any excessive bleeding (AEB) at surgery

paolo.gresele@unipg.it

Orsini S et al., Haematologica 2017, 102:1192.

Frequency of AEB at surgery according to diagnosis

Orsini S et al., Haematologica 2017, 102:1192.

Frequency of AEB at surgery according to type of surgery

Orsini S et al., Haematologica 2017, 102:1192.

Syndromic IPFDs

Disorder	Associated abnormalities		
Arthrogryposis renal dysfunction and cholestasis syndrome	Arthrogryposis, renal dysfunction, cholestasis, cerebral malformations, dysmorphic features		
Filaminopathy related macrothrombocytopenia	Skeletal dysplasia, mental retardation, cardiac valvular dystrophy, congenital intestinal pseudo-obstruction, terminal osseous dysplasia		
Gsα platelet defect	Short stature, mental disability, brachydactyly. Pseudohypoparathyroidism Ib (PHPIb)		
Hermansky-Pudlak syndrome, Chediak-Higashi syndrome	Skin, ocular and hair hypopigmentation, nystagmus Immunodeficiency		
Leukocyte adhesion deficiency III	Leukocytosis, recurrent bacterial infections		
Paris-Trousseau syndrome	Psychomotor retardation, facial and cardiac abnormalities		
Stormorken syndrome	Miosis, muscle weakness, dyslexia, ichthyosis, asplenia		
Velocardiofacial syndrome	Cardiac abnormalities, learning disabilities, velopharyngeal insufficiency, immunodeficiency, facial dysmorphisms and thymic hypoplasia		
Wiskott-Aldrich syndrome	Eczema, immunodeficiency		

Diagnosis of IPFD: guidance from the SSC of ISTH

Gresele P; SSC Platelet Physiology, J Thromb Haemost 2015, 13:314

Blood smear examination

Normal

MYH9-RD (Dohle-like bodies in granulocytes) Gray platelet syndrome (gray platelet)

Wiskott Aldrich syndromeMYH9-RDCediak-Higashi syndrome(micro-thrombocytopenia)(Macrothrombocytopenia)(cytoplasmic inclusions)

paolo.gresele@unipg.it

Diagnosis of inherited platelet disorders on a blood smear

Greinacher A et al. J Thromb Haemost 2017; 15: 1511–21

Light transmission aggregometry (LTA)

Diagnosis of inherited platelet function disorders by LTA

paolo.gresele@unipg.it

Defective platelet secretion with normal aggregation in δ -SPD

Nieuwenhius HK et al., Blood 1987;70:620

Flow cytometry in hemostasis and thrombosis

ADVANTAGES	DISADVANTAGES
 Small sample volume Short time of analysis Possibility to study platelets in whole blood Possibility to study platelet characteristics/function in thrombocytopenic patients 	 Expensive Technically complex Lack of standardization Need to process the sample immediately after blood collection

Flow cytometry in the diagnosis of IPFD

Glanzmann Thrombasthenia

Differential diagnosis of Platelet Type-Von Willebrand Disease and Type 2B VWD by flow cytometry

paolo.gresele@unipg.it

Giannini S, et al., Haematologica 2010; 95:1021

Diagnoses of IPFDs made by the application of a standardized diagnostic algorithm

DIAGNOSTIC ALGORITHM - Flowchart

paolo.gresele@unipg.it

Gresele P; SSC Platelet Physiology, J Thromb Haemost 2015, 13:314

Genetic Diagnosis: pros and cons

- Next Generation Sequencing enables the simultaneous analysis of large groups of candidate genes, allowing the rapid identification of a mutation in a known gene.
- Diagnosis of some IPFD can be reached only after genetic analysis (e.g. GT Variants).
- For some disorders (e.g. MYH9-RD) a phenotype/genotype correlation exists.

however

- We need to consider that several centers still do not have access to molecular testing.
- Genetic testing (especially WES) is a potentially valuable investigation for gene discovery only if backed up by good phenotyping.
- Ethics of predictive testing should be considered (e.g. diagnosis of FPD/AML)
- It can not be considered yet as an initial diagnostic test, but rather as complementary and/or confirmatory.

Indications to genetic diagnosis of IPFDs

- Not required: when clinical phenotype or first/second step tests are sufficient for a conclusive diagnosis (e.g. GT, BSS, PT-VWD)
- Advisable: when the platelet phenotype may not be undisputably attributed to a specific disorder (e.g. Stormorken syndrome) or when genotype/phenotype prognostic correlations exists (e.g. MYH9-RD, HPS)
- Recommended: when the clinical and laboratory picture is disorienting, functional alterations are heterogeneous, or characterization is uncertain for too few cases described (e.g. GT variants, cPLA₂ deficiency, etc.)

ThromboGenomics - Methods

ThromboGenomics - Results

Treatment options for IPFDs

- Antifibrinolytic agents: local or systemic; arrest/prevent epistaxis, gingival bleeding or menorrhagia; used for the prevention of bleeding for minor surgery
- **DDAVP:** i.v., s.c., nasal spray; efficacious in preparation to invasive procedures or surgery (contraindicated in PT-VWD; uncertain efficacy in some IPFDs)
- Platelet transfusion: treatment of acute bleeding or prior to surgery; should be used only when other agents have failed (alloimmunization and infectious risks)
- **rFVIIa:** approved for treatment of acute bleeding and for perioperative management of GT refractory to platelet transfusions; little or no informations for other IPFDs

Conclusions

- IPFDs are a heterogeneous group of bleeding diseases which represent a significant fraction of all the bleeding diatheses
- A careful clinical evaluation and a rational diagnostic algorithm based on a streamlined panel of tests allows diagnosis in a large part of the cases.
- Genetic diagnosis is becoming a conceivable alternative to extensive platelet function testing for many IPFDs
- IPFDs are associated with a significant bleeding risk
- Correct diagnosis and the use of prompt and appropriate treatment may minimize bleeding risk

Use of a whole blood remote flow cytometry platelet function test for the diagnosis of mild bleeding disorders

The ThromboGenomics platform

- Currently, 90% of patients with an heritable bleeding disorder with the exception of hemophilia and VWD never receive a conclusive molecular diagnosis.
- Targeted sequencing platform covering 63 genes linked to heritable bleeding, thrombotic and platelet disorders.
- The Thrombogenomics platform provides a sensitive genetic test to obtain molecular diagnoses in patients with a suspected etiology.

Invasive procedures

829 procedures (355 in IPFD, 374 in IPND). Median age at surgery: 31 years (IQR 15-52)

Major: any procedure in which a body cavity was entered, a mesenchymal barrier was crossed, a facial plane was opened, an organ was removed or normal anatomy was altered;

Minor invasive: any operative procedure in which only skin, mucous membranes or superficial connective tissue were manipulated, gastroscopy, colonoscopy and similar;

Dental: extraction, abscess removal, apicectomy and similar

Patients' characteristics The SPATA Study

Thrombocytopenia in IPNDs was on average mild (microscopic platelet count: **median 68x10⁹/L**; IQR 40-102x10⁹/L) (counter platelet count: median 50x10⁹/L; IQR 30-81x10⁹/L).

Parameters associated with post surgical bleeding

paolo.gresele@unipg.it

Orsini S et al., Haematologica 2017, 102:1192.

Treatment of bleeding for inherited platelet function disorders

treatment	evidence		
	laboratory effect on platelets	clinic	
local haemostatic measures	no data	amelioration of • epistaxis • surgical wound bleeding • gingival bleeding • dental extractions	
desmopressin (DDAVP)	 increased platelet adhesion and aggregation under flow conditions enhanced platelet procoagulant activity shortening of the bleeding time 	 management of bleeding during surgery and delivery efficacy for: δ-SPD, disorders of granule secretion, signal transduction defects, TP receptor deficiency, MYH9-RD equivocal evidence for BSS, HPS and COX-1 deficiency poor response for GT 	
antifibrinolytic agents	no data	amelioration of • epistaxis • gingival bleeding • menorrhagia prevention of bleeding following minor surgery	
activated recombinant FVII (rFVIIa)	 increased generation of thrombin enhanced adhesion of platelets to extracellular matrix restoration of platelet aggregation 	 approved by FDA for the treatment of bleeding episodes and for perioperative management of GT management of bleeding during minor and major surgery in BSS, PT-VWD and δ-SPD (case reports) 	
female hormones	no data	amelioration of menorrhagia	
platelet transfusions	no data	management of bleeding during minor and major surgery	
HSC transplantation	successfully used in GT dogs	successfully used in GT and BSS patients	
gene therapy	 correction of the bleeding phenotype in GT- and BSS-mice successfully used in GT dogs 	amelioration of the haematological and immunological condition in 7 WAS patients	

INHERITED PLATELET FUNCTION DISORDERS A revised classification

1-ADHESIVE PROTEIN RECEPTOR DEFECTS

BSS, GT, PT-VWD, VCF, $\alpha_2\beta_1$, GPVI, GPIV

2-ABNORMALITIES OF G-PROTEIN COUPLED RECEPTORS

 P_2 purinergic receptors, TP-receptor, α_2 adrenergic receptor, PAR-1

3-DEFECT OF PLATELET GRANULES (isolated/syndromic)

 α -granules, δ -granules, α + δ granules

4-SIGNAL TRANSDUCTION PROTEINS DEFECTS

Gs, Tx-synthase, cPLA₂, PKA, LADIII, CalDAG-GEFI, COX-1, SRC

5-DEFECTS OF MEMBRANE PHOSPHOLIPIDS

Scott syndrome, Stormorken syndrome

6- DEFECTS OF TRANSCRIPTION FACTORS

FPD/AML/MDS, FLI1-related dense granule defect,

Paris-Trousseau syndrome, GATA1

7- DEFECTS OF CYTOSKELETAL PROTEINS

Filaminopathy, WAS/XLT, Cytosolic adaptor protein (ADAP)

8- ENHANCED PLATELET FIBRINOLITIC ACTIVITY

Quebec platelet disorder

9- UNCLASSIFIED

SLFN14-related thrombocytopenia